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A second-order closure model describing the diffusion of a passive scalar from a small 
source is presented. The model improves upon the earlier work of Lewellen & Teske 
(1976) by ensuring t,he early stage of the release, the so-called meander phase, is 
accurately described. I n  addition to the mean concentration and scalar fluxes, a model 
equation for the evolution of the scalar variance is proposed. The latter introduces 
a new lengthscale which represents the scale of the concentration fluctuations. The 
model predictions are compared with the recent experimental data of Fackrell & 
Robins (1982a, b ) .  

1. Introduction 
The problem of predicting the dispersal of a pollutant in a turbulent flow is of 

enormous importance, and has received considerable attention from researchers. 
Although there is an extensive literature on the subject, practical prediction methods 
have not progressed much beyond the Gaussian plume formulae or the eddy- 
diffusivity models. There is, however, a broad basis of more fundamental research 
on turbulent diffusion of a scalar field, both experimental and theoretical, which can 
be used to provide the necessary insight to  develop an improved prediction method. 
Most of the more fundamental theoretical methods present very severe problems in 
their extension to non-homogeneous or time-dependent turbulent fields, so that some 
intermediate level is required. The second-order closure framework provides such a 
level, in that  more of'the physical processes are contained within the equations than 
with eddy-diffusivity models, but the equations are still considerably simpler than 
a spectral closure (see e.g. Leslie 1973). 

A further advantage of closure a t  second order is the inclusion of fluctuating scalar 
concentration variance, since this is a second-order correlation. Given the scalar 
variance, and an integral timescale for the concentration fluctuations, it is possible 
to estimate the uncertainty in likely measured values for different averaging times. 
This natural variability, which should be considered for proper evaluation of 
atmospheric dispersion models, may be important for sampling times as long as one 
hour under some conditions. Knowledge of the higher-order moments of the 
probability density function for the scalar field can be particularly valuable in 
situations where instantaneous or very short time averages are important, for 
example in the dispersion of toxic or flammable gases, or in assessing the problem 
of detectable odours. I n  these cases, the ensemble-mean concentration may be well 
below the threshold value, but the locally measured value can still exceed the limit 
for short times and cause problems. 

The application of second-order closure models to the diffusion of a scalar has 
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received less attention than that of the transport of momentum and heat (e.g. 
Lewellen 1977; Launder, Reece & Rodi, 1975; Lumley & Khajeh-Nouri 1974). The 
development of such a model for dispersion in the atmosphere was first given by 
Donaldson (1973). Lewellen & Teske (1976) presented the results of a simple 
second-order closure model for dispersion in the atmospheric boundary layer. Their 
model was able to describe the two stages of diffusion from a small source, namely 
the initial or meander plume where the plume dimensions grow linearly and the late 
phase where the plume spreads with a constant diffusivity; this behaviour is 
consistent with Taylor’s (1921) diffusion theory. Lewellen & Teske (LT) showed how 
the transition between the two stages was accomplished in the model by a change 
in balance in the scalar flux equation. Deardorff (1978) elucidated the model dynamics 
by presenting an exact solution for an exponential autocorrelation in homogeneous 
turbulence and showing that the second-order closure model could reproduce the 
result. The study of El Tahry, Gosman & Launder (1981) also demonstrates the 
ability of second-order closure to describe scalar dispersion, but is limited in its 
application, since i t  uses an algebraic model for the fluxes, which cannot describe the 
early evolution from a small source. 

The objective of this paper is to improve the LT second-order closure model for 
the mean concentration and to  develop a model for tthe concentration variance in a 
non-homogeneous flow. We shall use analytical and experimental results in designing 
the modelled terms wherever possible, and our principal comparison with laboratory 
data will be the recent experiment by Fackrell & Robins (1982a), who measured 
turbulent correlations in a plume diffusing in a wind-tunnel boundary layer. We shall 
first discuss diffusion in homogeneous turbulence to  help clarify the basic timescales 
of the problem. Recent experimental work by Warhaft & Lumley (1978) on the 
decay of homogeneous scalar variance, has shown that the scalar field introduces 
its own lengthscale into the dynamics. The presence of more than one timescale 
is also emphasized in the theoretical descriptions using spectral closure (Newman & 
Herring 1979), large-eddy simulation (Antonopoulos-Domis 1981 ), second-order 
closure (Newman, Launder & Lumley 1981) and random-walk simulation (Durbin 
1982). Having determined the appropriate timescales and turbulence model, we shall 
then proceed to the non-homogeneous boundary-layer studies by Fackrell & Robins 
(1982 a) .  

2. Diffusion in homogeneous turbulence 
2.1. Mean concentration 

We consider the diffusion of a passive scalar in a homogeneous turbulent field in the 
limit of large PBclet and Reynolds numbers. Let c(x,t) denote the scalar field, and 
let the overbar represent an ensemble average. Then 

a -  
- -- u; d ,  

DC 
Dt ax, 
_ -  

where 
~a - a -- Dt -%+a- 

3 axj ’ 
and a prime denotes a fluctuating quantity, e.g. c‘ = c - F ;  ui is the velocity component 
in the coordinate direction x i .  
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The equation for the turbulent concentration flux is 

where p' is the pressure fluctuation and p the mean density. We have assumed that 
the molecular dissipation term is isotropic, and therefore vanishes in (2.2). 

I n  this section we consider the source term to consist of an instantaneous line 
release of zero dimension, so that a t  t = 0 

F(Y, z, t = 0) = @(y) 6 ( 4 ,  

where 6 is the Dirac delta function, Q is the mass released per unit length in the z1 
direction, and we have identified y and z with the x 2  and x3 coordinates respectively. 

Deardorff (1978) shows that the exact solution should be expected to be Gaussian 
with a spread in the y-direction given by 

where a; =-(l/Q) j j  y2c(y, z, t )  dy dz. A similar equation holds for ug, with 
replacing d2 in (2.3). The timescale 7 in (2.3) is the integral timescale of the 
Lagrangian velocity autocorrelation function, which was assumed to be exponential. 
In  fact, Deardorff only considered the one-dimensional diffusion problem, but it is 
easily extended to two dimensions with the assumption that = 0. The latter can 
always be assured by a rotation of the (y,z)-coordinate axes. 

We first note that the triple-moment term does not affect the calculation of u; or 
a:, as shown by Lewellen (1981), provided that the triple is modelled as a gradient 
term. Thus the only modelled term affecting the development of the plume 
lengthscales is the pressure correlation. Deardorff shows that this term needs to be 
modelled as 

In  accordance with earlier work (Lewellen 1977), we model this term as A ( q / A )  n, 
where q2 = uiu;, and A is a turbulent lengthscale defined so that the dissipation of 
turbulent kinetic energy is q2/8A. A is a numerical constant, which takes a value of 
0.75. Note that this model is closer to that originally proposed by Donaldson (1973) 
than to the LT model, which used a timescale corresponding to the turbulent 
timescale in the region of the spectrum defined by the plume scale. The longer time- 
scale A / A q  now seems more appropriate in the light of Deardorffs result. We can 
interpret this physically as saying that, even when the plume is very small, the 
diffusion is effected by large-scale meandering of the plume, so that the flux is carried 
by the ambient energy-containing eddies on the lengthscale A ,  having a timescale 
of order A / q .  The latter ambient turbulent timescale is therefore the appropriate 
timescale for the pressure correlation term in the scalar flux equation, although other 
terms in the equations will depend on plume turbulent timescales. 

The triple moment in (2.2) determines the shape of the mcan-concentration profile 
in the early stages of the dispersion. Deardorff shows that the triple-moment term 

- 

can be modelled as 
(2.4) 
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where Kim has to take a certain time-dependent form t,o ensure a Gaussian profile. 
I n  fact, the requirement can be stated more clearly when one notes that the Gaussian 
profile is a self-similar profile, so that all moments and correlations are diffusing at 
the same rate and thus preserve the shape. This means that, when we close the 
equations and model a diffusive term empirically. we must ensure that all the 
correlations are diffusing a t  the same rate to obtain a self-similar solution. For closure 
a t  second order, (2.4) is thus the appropriate closure with Kim obtained from the 
diffusion of the mean concentration. I n  order to  keep the model as simple as possible, 
bearing in mind our desire to  extend i t  to more complex flows, we choose to estimate 
Kjm as 

(2 .5)  
~. 

Kj, = - (xi U& C‘ + X ,  ~ 3 :  c‘) dy dz. Q ‘ff __ 

This will correspond exactly to Deardorffs value in the case of homogeneous 
turbulence a t  short time, and will provide a robust estimate for more complex 
situations. Using this closure model, it follows from Deardorffs analysis that  the 
equations do predict a Gaussian mean profile with the correct spread rate. This model 
is also different from LT, so that the latter does not predict Gaussian profiles. 

At late times, LT show that the balance in equation (2.2) is between production 
and pressure scrambling, i.e. 

- 
so that we have gradient diffusion with an effective viscosity Kjm = u; u& A/Aq.  In 
this late-time limit the diffusivities calculated from (2 .5)  will yield this same value. 

Our model for the mean concentration and its fluxes is therefore 

DC a -  
u; c’, - = -- 

Dt axi 

where 

and (#) = j j # d y d z .  
Deardorff criticizes the LT model on the grounds that Kjm is a function of time 

since release. We have removed the explicit dependence on time in Kim, and replaced 
it with a value that depends on the local state of the plume ; this permits individual 
plumes to be treated separately. Thus the second-order closure model possesses 
several advantages over first-order closure. First, the diffusion process is described 
in terms of the more fundamental turbulence quantities rather than an empirical 
eddy diffusivity. Note that we have avoided the necessity to specify such an eddy 
diffusivity for the second-order quantities by using (2 .5) ,  which is the effective 
diffusivity predicted by the closure model itself. Secondly, the second-order closure 
provides a definite framework for extending the model to  non-homogeneous or 
buoyancy-driven flows. Finally, a prediction of scalar variance is 2, natural part of 
the second-order closure model, so that we obtain significantly more information 
about the concentration distribution. As we shall demonstrate, modelling the scalar 
variance introduces a new lengthscale which represents the scale of the concentration 
fluctuations; this scale grows as the plume grows, so that the time since release is 
dynamically significant. 
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2.2. Concentration-jluctuation variance 

There have been a number of studies, both theoretical and experimental, of the 
variance of concentration fluctuations. Gifford (1959) proposed a relatively simple 
phenomenological model for the early or meander stage of a plume in terms of two 
plume lengthscales but did not prescribe a method for predicting the scales them- 
selves. Chatwin & Sullivan (1979a, b, 1980) investigated theoretically the relative 
diffusion of a cloud of marked particles and demonstrated that the variance 
depends on source size, so that i t  is meaningless to consider a point source. They did 
not include molecular dissipative effects rigorously, however, and comparison with 
any second-order closure result is further precluded by their examination of the 
relative diffusion as opposed to the ensemble average. Unfortunately, the latter is 
also true of their measured data, and also the data of Murthy & Csanady (1971). 

Durbin (1980) used a two-particle random walk model to predict the concentration 
variance. His model includes the effect of small molecular diffusivity by averaging 
the fluctuations over a small volume. Functional forms for the one- and two-particle 
time and space correlations are chosen to be consistent with an inertial range a t  small 
separation, and exponential in time. Several predictions are made by homogeneous 
turbulence, but there is no quantitative comparison with data. 

There have been a number of studies of the decay of homogeneous scalar variance, 
as mentioned in the introduction, but we shall concentrate on the diffusion from a 
small source since our main interest lies in this direction. 

Fackrell & Robins (1982b) have recently completed Gifford's fluctuating plume 
model and used i t  to predict concentration variance c'2, which is compared with 
laboratory data for an elevated source in a wind-tunnel boundary layer. Gifford's 
model requires prediction of the outer scale of the plume, i.e. the scale over which 
the plume meanders, and the inner or instantaneous plume scale, i.e. the relative 
spread of the plume. Fackrell & Robins used the statistical formulations of Hay & 
Pasquill (1959) and Smith & Hay (1961) to  predict these scales in terms of the 
measured Eulerian velocity spectra. The Smith-Hay model has been criticized by 
Sawford (1982) for slow growth during part of the range for a very small source, but 
the formulation is consistent with other approximations over most of the range. 
Fackrell & Robins demonstrate reasonable agreement with the observations using 
this simple model, indicating that the model probably contains the correct basic 
physics. We wish to include these processes within a second-order closure framework, 
and we shall therefore draw on this model to  assist in the determination of closure 
assumptions. 

The Reynolds-averaged equations for the concentration variance is 

where E ,  represents the dissipation of c'2 by molecular diffusion. Since c'z should diffuse 
with the turbulent correlations, we model the triple-correlation term as in the flux 
equations. Thus we set a a -  a 7  _ _  uic'2 = - K..-c'2 axi azj( a j a x i  1. 
where Kij is given by (2.5). 

In  earlier work (LT, Lewellen 1977), 8, has been modelled as 0.45 .'"/T,, where T ,  

is a dissipation timescale, calculated from the turbulence timescale in the region of 
the ambient turbulent spectrum defined by the plume scales gY and gZ. This 
formulation is not correct, because uY and gZ are the outer or meander scales, which 
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- Fackrell & Robins show become rapidly independent of the source, while the total 
d2 is largely a result of the disparity between the inner and outer scales, and the inner 
scale remembers its initial condition for much longer. We therefore require an inner 
scale, A,, which we shall then use to determine 7,. 

The basis of the Smith-Hay model for the inner scale is a selective filter on the 
velocity spectrum, which states in effect that  the inner scale will grow a t  a rate 
proportional to the scale of the velocity fluctuations in the part of the spectrum 
corresponding to the inner scale itself. We can derive a much simpler equation for 
A ,  by assuming that the turbulent energy decays in a manner consistent with an 
inertial range for scales much less than the turbulent lengthscale A .  I n  practical 
situations, some such assumption will be necessary, since turbulent spectra will not 
generally be available. We therefore set 

and 

where a1 is an O( 1 )  constant, to  be determined from comparison with data. Note that 
(2.8) and (2.9) give the expected initially linear growth with t ,  followed by a region 
with A ,  a ti (see e.g. Sawford 1982). The dissipation timescale 7, is then constructed 
from q, and A,, so that our model for E ,  is 

q -  
E ,  = a2 d2,  

A ,  
(2.10) 

where a2 is a second constant. 
Note that our dissipation model depends entirely upon inertial properties of the 

velocity field, i.e. explicit molecular-diffusivity effects are absent. This means that 
our model is only applicable for high-PQclet-number flows, i.e. flows in which A ,  % T,, 
where 7, is the dissipation scale ~ i e - 4 ;  K, is the molecular diffusivity of the scalar, 
and E is the turbulent energy dissipation rate. A ,  must also be much larger than the 
Kolmogorov scale vie-#, where v is the kinematic viscosity. In  the experiment of 
Fackrell & Robins (1981), the dissipation scales are roughly 0.1 mm, while the 
smallest source diameter is 3 mm. 

An analytic solution for the early-time behaviour is obtained in Appendix A, and 
we summarize the results here. We denote by S the source-scale to turbulence-scale 
ratio, i.e. v , / A  = 6, and define A / q  as the unit time. Then, the production of c'2 is 
important only for t < O(S); the maximum value of e/C, is O(S-)), and occurs a t  
t = O(d) .  Here e2 and C, are the maximum values of fluctuation variance and mean 
concentration respectively in the plane transverse to the mean flow. These results are 
in good agreement with the data of Fackrell & Robins for their elevated release ; they 
suggest that c'" is a maximum a t  t = O(S),  while the maximum e/C,  is O(S-0.4) a t  
t = O(60.'). Thus our model for the dissipation of c'" contains the correct timescales, 
and we shall fix a, and a2 to  optimize quantitative agreement with the laboratory 
data of Fackrell & Robins. We emphasize that in this section we are treating the 
elevated releases as homogeneous turbulence ; this is a good approximation for the 
early part of the release, and we shall show in $ 3  that  a more complete treatment 
of the effect of the wall does not significantly alter the predictions of e/C,. 

Before attempting to fix a, and a2, we should recognize that eventually A ,  will grow 



A turbulent-transport model for concentration fluctuations and fluxes 199 

to be as large as A ,  so that (2.8)-(2.10) will be inappropriate. A ,  will continue to grow, 
since different parts of the plume will continue to separate. A ,  is related to Durbin's 
(1980) particle separation A ,  which grows like ti a t  late times, so a simple model which 
gives hiit: correct asymptotic behaviour is 

(2.11) 

Our philosophy here is to establish various asymptotic limits for modelled terms, 
and then match smoothly with the simplest type of function. I n  view of the 
complexity introduced by the presence of multiple scales, some firm idea of the 
behaviour in different limits is vital to  the development of a physically realistic model. 
We now need to determine the dissipation timescale for when A ,  >> A .  The 
timescale in (2.10) for A,  Q A can be derived by an inertial-range argument on the 
basis of PBclet-number independence, so that the spectral transfer of c" towards large 
wavenumber depends only on the local values in wavenumber space. A similar 
argument for A ,  % A would require the knowledge of energy-spectrum decay a t  small 
wavenumbers, but it appears that local wavenumber interactions are not the 
principal mechanism for transfer down the spectrum when A ,  9 A .  Rigorous analysis 
is, of course, virtually impossible at present, but the Test Field Model of Newman 
& Herring (1979) is a spectral closure giving some insight into the dynamics. The TFM 
predicts that in the limit A ,  B A the dominant interactions removing ? stuff from 
the A,  scale involve the energy-containing eddies on the scale A .  Thus the timescale 
for the decay of?  as obtained from the TFM is O(A, /q ) ,  i.e. the large scale of the 
concentration fluctuations with the full turbulence energy. We therefore model the 
dissipation as 

(2.12) q 
cc = Pz- 4 ( A ,  % A ) .  

At this stage we have fixed asymptotic behaviour a t  both extremes of A,, and 
introduced four empirical constants. This is somewhat misleading because A ,  has not 
been defined precisely except in terms of the dissipation cc, so that there are actually 
only two constants. To make this clearer, and also to fix one of the constants, we 
consider the dispersion of a plume from a point source in decaying homogeneous 
turbulence. Gad-el-Hak & Morton (1979) performed such an experiment and obtained 
a self-similar profile of (c'2)&/6 across the plume well downstream of the source. We 
are unable to model the initial development of the plume, since the scalar was 
introduced in a jet which causes the initial phase to be non-homogeneous turbu- 
lence. However, it  is claimed that the jet decays very quickly and we can consider 
their measured profiles to represent the late stages of dispersion in homogeneous 
turbulence. 

The second-order closure model predicts power-law decay of the turbulence energy 
(Lewellen 1977) and growth of the lengthscale A with exponents - and2 respectively. 
If we substitute these quantities into the plume equations, it is possible to  obtain a 
self-similar form for P. We note that the mean concentration will spread as a Gauss- 
ian at the same rate as A ,  with the fluxes proportional to the mean-concentration 
gradient. The mean concentration has the similarity form 

(2.13) 

where r is the radial distance from the centre of the plume, Q,, is a constant 
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proportional to the mass flux in the plume, and IT is the spread of the plume, so that 
u cc tf. If we postulate a similarity form for P, namely 

(2.14) 

where E = r / a ,  we can obtain an equation for f as 

f"  + (5 +i)ff + (4 -of = - 252 e-zf2, (2.15) 

where r is a constant which depends on the A ,  equation. If we use the large-A, 
equations for A,  and E, ,  then 

r = /3,($$; (2.16) 

this choice will be justified aposteriori. This similarity equation has precisely the same 
form as that proposed by Csanady (1967), except that  Csanady chose his form for 
E ,  so that he obtained the similarity equation for non-decaying turbulence. Our 
specification predicts no similarity for that  case, but the experimental details 
furnished by Csanady are not sufficient to  determine whether there is any real 
inconsistency with observations. However, the data of Gad-el-Hak & Morton do 
suggest similarity, and we choose the constant r to fit their data. Figure 1 shows the 
predicted form for (C'~):/C? using r = 4.6 and r= 5.2 together with the data of 
Gad-el-Hak & Morton. We choose to  use r = 4.6, implying p,/p$ = 1.26; this provides 
a reasonably good fit for the range of the data with largest errors at the origin. 

As we noted earlier, this large-A, formulation only involves one constant, namely 
p,/h, which we have now fixed a t  1.26. The small-A, formulation similarly involves 
only one constant. There remains the problem of joining the two asymptotic regimes, 
and we accomplish this by making the simple postulate that  the two regimes match 
a t  a certain point, say A ,  = cn A .  Then, from (2.8)-(2.12), 

and 
(2.17) 

(2.18) 

so that we have three relations between the five constants al,  a,, pl, PZ and cn in total. 
There is still an arbitrary factor in the definition of Ac,  but this is removed by setting 
the initial value of A ,  equal to the initial erg of the plume. There are thus two more 
constants with which to optimize model performance; we fix a1 and a,, then the above 
relations will determine co, p,, P2. 
- The elevated release data of Fackrell Cpt Robins (1982 a )  provides the evolution of 
d2 and e for a range of source sizes. The latter part of the measurements are affected 
by the presence of the wall, but the first half is near-homogeneous flow conditions. 
In  order to fix a, and az, we set the background turbulence values to the observed 
values a t  the source height, and solve the parabolic problem marching in the 
streamwise direction with the observed mean speed. The plume was initialized as a 
Gaussian shape ug = uz = &is, where d, is the diameter of the source, and was set 
to zero initially. A ,  is also set at $is initially, and the background turbulence scale 
A is obtained from the empirical formula 

1 1 =-+- 1 
A 0.652, 0.2H' 
- (2.19) 
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0 1 2 3 

t 
FIGURE 1. Relative intensity of concentration fluctuations (?):/e as a function of dimensionless 
distance 6 from plume centre, for plume in decaying, isotropic turbulence. Similarity solutions for 
r = 4.6 (solid line) and r = 5.2 (dashed line) are shown. Shaded region indicates data of Gad-el-Hak 
& Morton (1979). 

where z ,  is the height of the source, and H is the depth of the boundary layer. 
The specification of the turbulence scale is discussed more fully in $3, but i t  should 
be noted that the constants al, az etc. do have a weak dependence on the value of A .  
The initial value for uy is somewhat arbitrary, because the initial development of the 
plume is affected by such factors as turbulence in the source jet, and jet exit velocity 
profiles, which are ignored in the model. We are therefore beginning the integration 
at  some effective downstream distance where the plume has grown slightly, and 
setting cry = &is allows an acceptably accurate fit to the data points, as we shall show 
below. We have not varied this parameter in the optimization procedure, so it is 
possible that there is a better effective source size for this experiment. 

The integrations were made on a finite-difference grid that expands with the plume 
to maintain similar resolution at all times. Spatial differences were second-order- 
centred, and the time-differencing scheme utilized the AD1 method. Fields were 
interpolated linearly onto the new grid after expansion, and different grids and 
expansion rates were tested to ensure that numerical errors were insignificant. The 
principal comparison was with C/C,, where C2 is the maximum value of c'", and C, 
is the maximum c a t  any x-station. Various combinations of a,, a2 were tested, and 
a good fit to the measurements was obtained with a, = 0.34, a2 = 0.54. The results 
for this combination are shown in figure 2 ,  together with the observations of Fackrell 
& Robins. The model gives a good fit to all the data points ; in particular, the variation 
with source size is accurately described, confirming the correctness of the form for 
A ,  and 6,. These values of a1 and a2 imply co = 0.41, PI = 0.10 and P2 = 0.40. 

Wilson, Robins & Fackrell (1982) and Wilson, Fackrell & Robins (1982) obtained 
good fits to this laboratory data also, using a largely empirical model for c'2 and 
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xlH 

FIGURE 2. Dimensionless fluctuation intensity e/C,, for the elevated releases of Fackrel1.k Robins 
( 1 9 8 2 ~ ) .  Model predictions shown as solid lines for different source sizes. Symbols represent 
observed data as follows: x ,  d, = 3 mm; A, 9 mm; 0 ,  15 mm; 0, 25 mm; 0, 35 mm. 

uu 
0 20 40 60 80 100 120 140 160 180 200 

i = xq/AU 

FIQURE 3. ( G ) i / C m a x  versus xq/AU for release in homogeneous 
isotropic turbulence; d , / A  = 0.01. 
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FIQURE 4. Transverse profiles of p/2* at various downstream locations for d , / A  = 0.01, 

suitably chosen constants. The objective of using a more complicated model here is 
to increase the generality by including more fundamental physics, so that a wider 
range of flow conditions and source sizes can be simulated. 

I n  order to provide clearer justification of our assumption that the c'z profile is 
Gaussian in the early stages, the results from an integration with d s / A  = 0.01 are 
presented here in detail. The development of ( z ) i / c m a x  (where max denotes the 
maximum a t  a downstream location) is shown in figure 3 as a function of dimension- 
less downstream distance zq /AU.  The dimensionless profiles of across the plume 
are shown in figure 4. It is clear that the early profiles all have the same shape, which 
is actually Gaussian, but this eventually changes to  a profile with a minimum in the 
centre. Comparison with figure 3 shows that the Gaussian shape begins to change 
where ( z ) i / c r n a x  falls below about 1. This behaviour is consistent with our earlier 
ideas about the development of would be Gaussian 
whenever the production could be neglected. The one-half term on the left-hand side 
of (A 4)  in the Appendix represents the production term in the ? equation, so this 
should be compared to ( z ) i / c r n a x  to determine its importance, and a value of 1 is 
a reasonable estimate of the point where production is significant. At late times 
A ,  cc ti, so the dissipation timescale is also proportional to ti. A balance of production 
and dissipation a t  late times gives p / c 2  - t-4, and also gives a profile shaped like 
the gradient of C, i.e. zero in the centre and maxima away from the centre. The 
predicted behaviour of ( z ) i / C m a x  - t-4 is a very slow decay, and is consistent with 

where we assumed that 
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the numerical solutions which show both slow decay of the relative intensity of the 
fluctuations and also a very slow transition toward the asymptotic profile shape. 

As a final justification for our model for the late-time behaviours (2.11) and (2.12), 
Durbin’s (1980) random-walk solution for a constant mean scalar gradient in 
homogeneous non-decaying turbulence gives 2% x ti a t  late times. Our model pre- 
dicts the same dependence since A,  will grow like ti, giving a dissipation timescale 
proportional to t i ;  the scalar flux will be a constant in the presence of a constant 
gradient, so the production of is constant. The resulting balance between 
production and dissipation gives oc ti. I n  contrast, the second-order closure model 
of Newman et al. (1981) gives ? cc t and E , + O .  

3. Diffusion in non-homogeneous turbulence 
Since all practical cases of interest involve non-homogeneous turbulence fields, we 

must consider the extension of our model to cover such cases. In  air-pollution studies, 
the situation is generally a release within a boundary la,yer, so that we must deal with 
variations in mean velocity, turbulence energy and also turbulence lengthscales, since 
the latter tend to zero on the rigid boundary. The laboratory data of Fackrell & 
Robins (1982a, b )  is very relevant to  these studies and extensive comparison with 
our model predictions will be made. Fackrell & Robins made detailed measurements 
of turbulent correlations for elevated and ground releases in a wind-tunnel boundary 
layer, so that the performance of the model can be directly assessed from such 
comparisons. 

In non-homogeneous turbulence, we need to account for spatial variation of 
variables such as Kjm, which were independent of position in the homogeneous case. 
When the background turbulence is not constant, the global integral of (2.5) needs 
to  be replaced with a local integral so that we use only local similarity to  relate the 
triple moments to the second moments. The appropriate range for such an integral 
would be the turbulence lengthscale A ,  which represents the size of the energy- 
containing eddies. Thus a more general definition of the diffusivity is 

- 
(x; - xl) UT + (xA - 2,) u; C’ dy‘ dz’ 

, a6 
JJ Kim@) = - 

jj k 3 - X  j )  dY’ dz’ 
W X )  

where the domain D ( x )  = {x’: Ix’-xI < A ( x ) ) .  Note that the integral in the de- 
nominator has been written in a form that makes a constant background value 
immaterial. 

Vnfortunately i t  is computationally expensive to calculate a local integral of this 
form a t  every spatial position at each timestep, and we have therefore used a 
simpler approximation in our calculations. The major effect of the local average 
in the boundary-layer flow is to limit Kim near the wall where the lengthscale is 
small, and the fluxes are in local equilibrium. We have therefore retained the global 
integral in the definition of Kjm,  but applied a local limit of the equilibrium 
value, Kjm < A/Aq.  

The concentration-fluctuation lengthscale A ,  should also be treated as a spatial 
variable in non-homogeneous flow, and values of turbulence energy and lengthscale 
appearing in the equations for A ,  and 6 ,  should probably be approximated by local 
integrals of the form suggested for K,,(x).  However, in view of the computational 
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expense, we shall represent A ,  as a constant for the entire plume. We calculate it 
exactly as in the homogeneous case, but whenever a value is required from the 
background field we use a plume average defined by 

where Q is the field to be averaged. Thus (2.8) becomes 

for example. 
A similar philosophy also lies behind our neglect of mean strain and surface- 

reflection terms in the pressure-gradient correlations appearing in the scalar flux 
equations. Complicated models exist which claim to model these effects (e.g. Gibson 
& Launder 1978), but their accuracy and generality have not been proven; we 
therefore prefer to retain the simplest model until the need for a better representa- 
tion is demonstrated. We note that the scalar variance equation does not contain 
any pressure terms, and is thus unaffected by this modelling choice. 

There is one further extension which we found necessary but less obvious. This 
involves the horizontal concentration flux n and its behaviour near the boundary 
wall. If we simply use the local scales for p and A in the n e q u a t i o n ,  then the damping 
timescale will vanish near the wall because A - 0.65% (Lewellen 1977), and therefore 
&? will be O(z)  because the production term 

- ac - 2)Q - 
aY 

remains finite. Measurements by Fackrell & Robins (1982a) show _ _  that  &? = 0 (In z )  
near the wall, as can be seen from their figure 18, which shows v'c' /U(z) remaining 
constant as z+O. Fackrell & Robins' interpretation of this measurement is that the 
damping timescale for &? is proportional to  u(z) near the wall, since they also show 
that there is a balance between production and damping in this region. They note 
that the behaviour of &? is precisely that required to ensure that the plume spreads 
laterally a t  the same rate a t  all heights, the rate being measured as a function of 
distance x downstream from the source. There seems to be no rationale for a turbulent 
timescale that varies like u ( x ) ,  and we therefore propose a different physical model 
for the observed behaviour. Our hypothesis is based on our view of the plume as a 
coherent entity, so that concentration fluctuations occur on the same lengthscale 
throughout the plume. We suggest that there are therefore contributions to  ?c7 on 
the scale Ap, i.e. the average turbulence scale over the plume. Note that this is not 
the fluctuation scale Ac,  but is the scale of the average turbulent eddies that are 
diffusing the plume. This scale will be considerably larger than the local scale near 
the wall if the plume extends significantly upward from the boundary. Such a scale 
is prohibited in the vertical flux w", since the proximity of the wall prevents any 
large scales in the vertical direction. Assuming that there are contributions to n 
on the Ap scale, we can then explain the observations by pointing out that  the 
production term 

- ac 
aY 

- u'2 - 

occurs on the local scale A ,  because that is the scale of p. Thus small-scale 
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contributions to z are produced locally, and also removed locally on the short local 
timescale, giving the observed balance between production and damping. There is, 
however, very little energy in this small-scale contribution; the main part of near 
the wall is in the A ,  scale which is damped on the much slower 

timescale, and reaches the ground via diffusion from above. Thus vertical coupling 
of is the factor that  ensures that the plume diffuses a t  the same rate at all heights, 
and hence produces the observed v” profiles. We must determine the partition of 

between the two scales A ,  and A within the model, because the assumption that 
&? is all on the A ,  scale would give n tending to a constant value a t  the wall rather 
than proportional to u(z). We propose a crude but simple estimate based on the local 
production rate of &?, namely 

-FA& 
v c, = -- 

is the small-scale contribution to  n, with the restriction that 

Aq aY’ 

where - 
V‘C’ O < = - S < l  
v’c’ 

Equation (3.1) postulates a balance between small-scale production and dissipation 
whenever possible, but does not allow the small-scale dissipation to exceed the 
small-scale __ production. Defining v’cb = v’c’-v’cL, we write the damping term in the 

-~~ 

v’c’ equation as 
- 

This model implies that  when larger values of z are present near the ground than 
could be produced by the local turbulence, presumably by diffusion from aloft, then 
the additional &? is dissipated on the longer average plume timescale. We show model 
results below which indicate that this crude parametrization gives reasonably good 
predictions of the &? profiles. 

Finally, in accord with the above philosophy, we calculate the horizontal diffus- 
ivities in the modelled triple correlation terms using plume-average quantities rather 
than local values. This is not strictly justified since we have postulated only part of 
the correlations on the Ap scale, but the differences from calculating each part 
separately do not justify the extra complexity, since diffusion is usually unimportant 
y’ien the small-scale contribution is dominant. 

We are now in a position to  compare our model predictions with the data obtained 
by Fackrell & Robins. In  order to ensure that we are evaluating the predictions of 
the scalar transport equations, we use the measured profiles for the dynamical 
quantities rather than a model prediction. Unfortunately, the turbulence lengthscale 
A is not easily specified from the measurements. A is used to determine several dif- 
ferent timescales in the model, with coefficients which have been determined to be 
consistent with other model predictions. We lose this consistency by using measured 
values for the Reynolds stress, so that A becomes somewhat arbitrary. Rather than 
use the measured dissipation rate to set A ,  we chose a simple algebraic form which 
is consistent with earlier model integrations for boundary-layer flows (Lewellen 1977), 
namely 
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1 1 +- - 1 
A-0.652 0.2H’ 
- (3.3) 

where H is the boundary-layer thickness. The linear relation is appropriate near the 
wall, while the constant value is a typical value in the outer part of the boundary 
layer; the latter value is also roughly consistent with the dissipation measurements 
of Fackrell & Robins for z / H  = 0.5. We may note that the integrations reported below 
were also run with a different scale profile between the two limits, namely 

A = min (0.652, 0 . 2 H ) ,  (3.4) 

and produced results which were in most cases within 15% of those presented. In  
making these runs, a, and a2 were set to 0.30 and 0.56 to optimize the fit with the 
elevated release data using the different value for A implied by (3.4). 

We have also used 4 3  in place of q2 in all the modelled terms, because the observed 
q2 implies inconsistent behaviour of the effective diffusivity in the surface layer. This 
was one of the means for determining model constants (Lewellen 1977), so that 
consistency here is quite important. We note that the observed profile of 2 is very 
close to the model predictions, and the model surface-layer relationship q2 = 4 3  
allows us to make a consistent estimate of q2 from the observations. 

Having defined all the background turbulence fields, and the evolution equations 
for the scalar quantities, the parabolic equations were integrated in a two-dimensional 
domain, marching in the streamwise direction, i.e. 

At the lower boundary z = 0 we specify the appropriate conditions for an 
impenetrable wall, i.e. ac - a -  a -  

aZ aZ ax 0. (3.5) - - - cIwf = --f9f  = - - I 2  = 

All scalar quantities are set to zero on the outer boundaries z = 2, and y = Y,, 
and we use a plane-of-symmetry condition a t  y = 0 so that only half the domain needs 
to be considered. The outer boundaries Y,, Z ,  are adjusted during the integration 
to maintain 

where 5 is the height of the plume centroid, and a, and rz are the plume spreads. 
Integrations were made for all the cases reported by Fackrell & Robins; these 

constitute five elevated releases and three ground releases. Detailed profiles for the 
9 mm elevated release and the 15 mm ground release are reported, while the ratio 
of concentration fluctuation standard deviation to mean concentration are given for 
all the releases. We first compare the model predictions for the latter quantities, giving 
some overall comparison of the model performance on the range of data. 

Figure 5 shows the model predictions for the ratio of the maximum value of (c’2): 
(=  8) to the maximum value of c, denoted by C,, as a function of x / H .  The data 
of Fackrell & Robins are also displayed in the figure. The elevated releases are little 
different from the homogeneous results shown in figure 1 ,  as anticipated in $2.  The 
ground releases show reasonable agreement with the measurements also, although 
they lie somewhat below the virtually constant observed value of 0.6 over the range 
of release diameters and over the downstream range of the data. Figure 5 demonstrates 
the ability of the model to predict the independence of the ratio of standard deviation 
to mean for a wide range of releases. 

Y, E [7a,, lOa,], 2, E [X+ 14a,, Z+ 20a,], 
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FIGVRE 5 Full model predictions for t / C ,  in elevated and ground releases. Symbols as in figure 
2 for elevated releases Ground-release predictions are shown as dashed lines, data symbols are A, 
3 mni, V, 9 mm, 0 , 1 5  mm 

It is true that two empirical constants were chosen to optimize the fit for the 
elevated releases, but the agreement with measurements on the shape and magnitude 
of the range of data values strongly suggests that  the dominant physical processes 
and timescales have been incorporated into the model. Further support for this view 
comes from examination of the detailed measurements of the plumes. 

Figure 6 shows the evolution of several plume quantities, namely C,, 6, and 8, 
for the elevated (9 mm) and ground (15 mm) releases. 6, and S, are the plume scales, 
defined by Fackrell & Robins as the distance over which the concentration falls to 
half its maximum value. I n  the y-direction. the plume shapes are very close to 
Gaussian, so we have plotted S, = 1.17a,, which is the appropriate value. For the 
ground release the vertical profiles are nearly self-similar, as we shall see below, so 
that 6, is defined from the profile at y = 0. For the elevated release, however, Fackrell 
& Robins obtained S, by fitting a reflected Gaussian to the measured profile and 
relating S, to the Gaussian spread. Since a Gaussian does not provide a good fit a t  
late times, we have simply plotted 8, = l.17az, where a, is the standard deviation of 
the entire plume, i.e. no reflections considered. This should agree with the measure- 
ments a t  early times, but is a different measure after the plume has touched the 
ground, so that the comparison is not useful after x / H  = 3 in figure 6 ( b ) .  The 
maximum concentration on the ground is also shown in figure 6 ( b ) .  The predictions 
of the spread rates and maximum concentrations are generally good for both releases. 
There is a tendency to underpredict the horizontal spread rate for the ground release 
by about 20 76, with a consequent 20 yo overprediction of the maximum concentration. 
The elevated release is predicted accurately until i t  reaches the ground, where the 
diffusion is too slow. The latter point will be discussed further when we examine the 
profile shapes. 

Comparisons of the shape of the concentration profiles (normalized by the 
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FIGURE 6 Predictions and observations of plume spread and maximum concentrations Predictions 
shown as solid lines. ( a )  Ground release, data 
0, C,, ., C,, 0,  Sz; A, S, (C, is the maximum concentration on the surface) 

0, C,,,, +, S,, X ,  8, ( b )  Elevated release, data 
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FIGURE 7. Vertical profiles of C/C, at plume centre. (a) Ground release. (b) Elevated release; data 
symbols: +, x / H  = 0.96; x ,  1.92; 0, 2.88; 0,  3.83; 0,  4.79; A, 6.52. Note that origins of 
consecutive profiles are offset to the right. 
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FIGURE 8. Vertical profiles of P/t2. Symbols as figure 7. (a) Ground 
release. ( b )  Elevated release. 
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maximum concentration) in the vertical direction are shown in figure 7 .  The 
ground-level release profiles collapsed onto a single non-dimensional curve when 
plotted against z/6,. Fackrell & Robins report the same results from their measure- 
ments, and the model prediction for the shape of the profile is in excellent agreement 
with the observations. Good results are also obtained for the elevated release, with 
profiles closely matching the data, except for the latest station which indicates the 
model prediction progressing toward the final ground-release shape more quickly than 
the observations. The discrepancies are only significant very close to the ground, as 
the dashed lines in figure 7 ( b )  demonstrate. These profiles were obtained by resealing 
c so that the actual maximum is predicted correctly; those curves are different 
because the observed maximum is elevated whilst the model predicts the maximum 
on the ground. It is evident that the upper region of the profile is more accurately 
predicted. The errors below z / H  = 0.1 are probably due to underprediction of the 
horizontal fluxes near the ground, as we shall see later. We note however, that there 
seems to be some inconsistency in the data near the ground also; figure 6 ( b )  shows 
the observed maximum to be on the ground a t  the last station, while figure 7 (b )  shows 
the ground value to be significantly lower than the maximum. 

The model profiles are the most sensitive to changing the specification of A ; use 
of (3.4) causes the elevated release to diffuse downward and develop the features of 
the ground release more quickly, although the differences are still less than about 25 yo. 

We also compare the vertical profiles of c'z, again normalized by the maximum 
value in the profile; the results are shown in figure 8. The ground release profiles 
collapse onto a self-similar curve when plotted against 6,; this curve shows a 
maximum value of c'z a t  about 0.756,, with reduction to about half the maximum 
value a t  the surface. The model prediction is very close to the measurements again. 

For the elevated release (figure 8 b )  there is also good agreement with observation. 
At early times the profile is close to Gaussian, as discussed in $2 for homogeneous 
turbulence. As the Gaussian spreads, it  eventually reaches the ground plane and 
ceases to mirror the mean concentration profile. Instead, p remains small near the 
ground, and the elevated maximum begins to move upward, following the region of 
maximum production where gradients of c are significant. 

The second-order closure model predicts the observed reduction in ?near the wall, 
which Fackrell & Robins suggest arises through increased dissipation by the small 
eddies in that region. The model, however, does not include such a mechanism because 
we have assumed that the concentration fluctuations occur principally on the A ,  scale. 
There is a slight increase in the dissipation rate near the wall due to the increase in 
turbulence energy, but this is only a small effect. The main cause of the small c'z seems 
to be the absence of production terms; we plotted the profile on the centreline, y = 0, 
so that a = 0 a t  all heights, and also == 0 on the lower boundary. Thus there 
is no production of c'z a t  the ground, and the value there is determined by the rate 
of diffusion. The diffusion rate in the vertical is small near the ground, since the scale 
of the eddies with significant energy in the vertical component must tend linearly 
to zero at the wall and we limit the diffusivity using the local equilibrium rate; there 
is therefore a low value of p in this region, the value being determined by the 
horizontal diffusion rate. The difference between the point on the ground and the 
point of maximum d in the early elevated plume is in the diffusion rate only, both 
points have no production of c", but the elevated point has a larger scale for the 
vertical eddies, and consequently diffuses c'z much faster to fill in the region of low 
production. 

Lateral cross-sections of c" illustrate the roles of diffusion and production, figure 
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FIQURE 9. Transverse profiles of ?. (a )  Ground release; solid data symbols are at z/S, = 0.5, 
open symbols at z/&, = 1.5. (b) Elevated release; all profiles are at the height of maximum cf2. 

9 ( a )  shows cross-sections through the ground release at three different heights. The 
curves are the same a t  all x-stations when normalized by ag and the centreline value. 
We may note that the mean-concentration profiles are all close to Gaussian in the 
y-direction, in accord with observations, and the spread measured a t  various heights 
is generally within 10 % of the mean value obtained for the entire plume. Figure 9 ( a )  
shows the model predicting a very slight minimum on the centreline at z = 0, but 
a maximum on y = 0 a t  z = $8, and z = &. The measured profiles a t  the two elevated 
positions show a relatively lower value at y = 0, i.e. more tendency toward a 
minimum on the centreline; the measured profile a t  z = $8, is closer to  the predicted 
profile at z = 0. The model has the correct quantitative behaviour, but details of the 
profile shapes are not precise. We believe that the discrepancies here are due to errors 
in near the ground, and consequent errors in the production rate for p; the flux 
profiles will be discussed in detail below. The profiles for the elevated release a t  the 
height of the maximum are shown in figure 9 (b )  ; these also agree quite well with 
the observations, but show the same tendency as the ground release to be closer to 
Gaussian than the observation. 

are shown in 
figures 10 and 11. Figure 10 shows ground-release results for two downstream 
stations, and various positions across the plume. The centreline profile and the inner 
profile a t  roughly y = 48, from the model prediction collapse together very well, but 
the outer profile a t  y 2 8, is slightly larger in magnitude, with a sharper maximum. 
The measured profiles do not really confirm this change in profile, but there are 
generally higher values in the outer profile. The overall agreement in profile shape 

Normalized vertical profiles of the vertical concentration flux 
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FIQURE 10. Vertical profiles of vertical flux 

(a )  x / H  = 2.5: y/S, Model Data ( b )  x / H  = 5.92: y/S, Model Data 
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FIGURE 11. 
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FIGURE 12. Dimensionless profiles of at the range of locations reported by Fackrell 
& Robins. (a)  Ground release. ( b )  Elevated releaee. 

is very good. The same is true of the centreline profiles for the elevated release, shown 
in figure 11 ; predicted and observed values agree very well. 

are shown in figure 12 for ground 
and elevated releases. The graphs are a composite of all the profiles a t  the positions 
plotted by Fackrell & Robins, which covers the range of downstream stations and 
also lateral position within the plume. The normalization includes the mean velocity 
G(z),  and is the appropriate scaling (as shown by Fackrell & Robins) if the plume is 
diffusing laterally at the same rate a t  all heights. The measurements show a scatter 
of points within about 20 % of unity, and no evident trend with height or downstream 
or lateral portion. The model predictions do not show any significant trend with 
downstream or lateral position, but there is a reduction to a value of 0.5 at the surface, 
which takes the model results out of the band of the measurement below about 0.48, 
for the ground release and below z = 0.07H for the elevated release. 

near the ground was discussed a t  the beginning of this section, 
and used as the basis of a 'two-scale' model, i.e. we considered &? to be composed 
of fluctuations on two distinct scales near the ground, namely Ap and A .  Our estimate 
of the fraction in the small scale A is denoted by a and given in (3.1). We accept 
that this is a very crude description of the dynamics, but point out that the 
assumption that all the lateral flux is on one scale, i.e. = 0 or 3 = &?, results 
in significantly worse predictions of the vertical profile, and also gives a plume which 
diffuses at a very different rate near the ground. The two-scale description of does 
introduce considerable potential for complexity, but seems to be necessary to 
understand the behaviour of the plume. Having accepted the impossibility of 

Vertical profiles of the normalized lateral flux 

The behaviour of 
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modelling the flow with a single scale, we feel justified in choosing the simplest 
conceptual model in order to investigate its consequences and possibilities. Although 
the prediction of ?? is in error close to the ground, the discrepancies are much smaller 
than the one-scale model, and we have gone some way toward an accurate description 
of these processes. 

As noted earlier, the reduced value of &? near the surface is probably responsible 
for the lateral profiles being closer to Gaussian, in that larger values of &? would 
give higher production off the centreline, and tend to increase ? in that region. 

4. Summary and conclusions 
A second-order closure model for the dispersion of a passive scalar has been 

presented and tested against laboratory data. The model improves upon the earlier 
work of Lewellen & Teske (1976) in that attention has been paid to the early stages 
of the release to ensure that correct behaviour is modelled. Our final model predicts 
the linear and parabolic regimes of the mean-concentration profile growth without 
any new empirical constraints, and compares well with experimental data. The main 
restriction is that each release must be treated separately; this seems to be a 
fundamental problem with any closure scheme, as shown by Deardorff (1978). 
However, we have removed any requirement from the specification of time-dependent 
diffusivities, by allowing all the turbulence correlations to diffuse a t  the same rate 
as the mean concentration in the early stages. This closes the system of equations, 
allowing the closure model to completely determine the solution in terms of the 
background turbulence parameters. 

The new model also includes a prediction of the concentration variance c-; this 
quantity is known to be dependent on source size, and introduces a new lengthscale 
into the problem, namely the concentration fluctuation scale A,. A simple equation 
for A ,  has been prepared which is based on the behaviour in the limits of very small 
or very large A,. These limits are obtained by identifying A ,  with the two-particle 
separation as discussed by Durbin (1980). Having determined these asymptotic 
behaviours, empirical coefficients were then chosen to optimize the agreement with 
the data of Fackrell & Robins (1982~) .  It should be noted that the shape of the 
evolution, as well as its variation with source size, is predicted, so that agreement 
does imply that the dynamics are being described correctly. 

In  conclusion, it has been demonstrated that the dispersion of a passive scalar can 
be modelled using second-order closure techniques under the idealized laboratory 
conditions considered in this paper. The main advantage of the closure scheme is that 
it provides a foundation for considering more complex situations, as well as a 
framework within which simpler parametrizations can be developed. 

This work was partially supported by EPRI  with (3. R. Hilst as project manager 
and by NRC with R. F. Abbey as project manager. 

Appendix 
We examine here the early-stage model predictions for the concentration variance. 

Recalling that we denote the integral over the plume by angular brackets, we can 
combine the equation with the F equation to obtain 

D -  
Dt 
- ((c'2) + (3))  = - (€,). 
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We know from $2.1 that C has a Gaussian profile, with standard deviations ug and 
'T, given by (u, + ($)3 t )  and ('T, + (3); t )  respectively, where 'T, is the initial (circular) 
spread of the plume. If we assume that c ' ~  has the same profile shape as C, then (A 1 )  
will become an equation for the centreline value of F. This assumption is justified 
by numerical solution of the full equations (see figure 2.4), but we note here that 
does mirror the C-distribution for some time, because the production of occurs very 
early - during the release from a small source. Once the production phase is passed, 
d 2  diffuses a t  the same rate as C, by construction, and therefore will adopt the same 
Gaussian profile. 

and C respectively, then (A 1) can be 
rewritten as 

If E2 and C, are the centreline values of 

(A 2 )  
D a2 q c  - ( ul/ (7, [ E 2  + @h]) = - - uu Q, 3 2 .  
Dt A,  

A ,  = [ul +$a, qtA-i]$, 

Equations (2.8) and (2.9) can be solved to give 

(A 3) 

where we set A,(O) = u,. We have the freedom to set this initial condition since we 
allowed two empirical constants in the earlier equations. 

Substituting for uu and u,, and using the fact that  the total flux Cmuyuz is 
conserved, (A 2 )  becomes 

where the equation has been written in terms of the variable t/C,,,, which measures 
the relative intensity of the concentration fluctuations. For a small source ( v o / A  4 1 )  
2/Cm will be large, so the term in square brackets on the left-hand side of (A 4) is 
approximately E2/Ch. However, the one-half cannot be neglected in the very early 
stages, since it represents the production terms. The production can be seen to be 
important only for t < a,/q, by which time E/C, is O(1);  this is a very short time 
and justifies our Gaussian assumption. Hence for t > O(u, /q)  (A 4) predicts a 
relatively straightforward decay of (ug az)-l E2/C&. 

The solution is 

d2 A ,  _ -  - -u u,[l +#a1 
Ch u; 

where y = 3a2/2a1, and A, is an O(1) constant related to the maximum value of E2 
attained a t  the end of the production phase. 

Several features can be noted from (A 5 ) .  First, d/C, will only maximize within 
this early-time solution if y > 2 ,  since vg and u, grow linearly with t for t much smaller 
than the turbulence time A / q ;  this imposes a constraint on the empirical constants 
a1 and a2. Secondly, if y > 2 the maximum E/Cm occurs at t = O ( 4  A i / q )  and takes a 
value O( A f / u t ) .  
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